
TeraPCA: A fast and scalable method to study genetic variation in tera-scale genotypes
Aritra Bose1, Vassilis Kalantzis2, Eugenia Kontopoulou1, Mai Elkady1, Peristera Paschou3, Petros Drineas1

1-Department of Computer Science, Purdue University, West Lafaye�e, IN, USA
2-IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY, USA
3-Department of Biological Sciences, Purdue University, West Lafaye�e, IN, USA

Problem statement
I Principal Component Analysis (PCA) is a key tool in the study of population

structure in human genetics.
I As modern datasets become increasingly larger in size, traditional approaches

based on loading the entire dataset in the system memory (RAM) become
impractical and out-of-core implementations are the only viable alternative.

The TeraPCA library

Our contribution is summarized in TeraPCA, a C++ library to perform
out-of-core PCA of large genetics datasets:
I TeraPCA computes the sought Principal Components by partially solving a
symmetric eigenvalue problem.
I This eigenvalue problem is solved by Randomized Subspace Iteration.

Why it works: typical applications in genetics only require a very small number
of PCs (e.g., 10) within a small accuracy (e.g., two-three digits). Most
importantly, Randomized Subspace Iteration features block iteration thus
allowing higher granularity in out-of-core se�ings.

TeraPCA in a Nutshell

Algorithm Randomized Subspace Iteration

Input: A> ∈ Rn×m, initial guess matrix X0 ∈ Rm×s with elements drawn i.i.d. from
the normal distribution N(0, 1), k ≥ 1, and s ≥ k.

Output: The k leading approximate le� singular vectors of A.

1: C = A(A>X0)
2: repeat
3: Q = orth(C)
4: C = AA>Q
5: M = Q>C
6: Compute the eigenvalue decomposition M = XDX>

7: C = QX
8: until convergence
9: return first k columns of Q

Algorithm Out-of-core MMV C = A(A>X )
Input: ζ > 0, m × s matrix X .
Output: m × s matrix C.

1: C = 0
2: for i = 1 : ζ do
3: Fetch the i-th row-block of A>

4: C = C + Ai(A>i X )
5: end for

Datasets & Experimental Setup

I Our goal is to approximate the ten leading Principal Components (PCs).
For TeraPCA we set the dimension (s) of the initial approximation
subspace equal to twenty.

I All our experiments ran at Purdue’s Brown cluster on a dedicated node
which features an Intel Xeon Gold 6126 @ 2.6 GHz processor, 96 GB
RAM and 64-bit CentOS Linux 7 operating system.

Dataset Size (.PED file) Size (.BED file) # Samples # SNPs
S1 (simulated) 19 GB 120 MB 5,000 1,000,000
S2 (simulated) 38 GB 239 MB 10,000 1,000,000
S3 (simulated) 373 GB 24 GB 100,000 1,000,000
S4 (simulated) 1.9 TB 117 GB 500,000 1,000,000
S5 (simulated) 3.7 TB 233 GB 1,000,000 1,000,000
S6 (simulated) 38 GB 2.4 GB 100,000 100,000
S7 (simulated) 150 GB 9.4 GB 2,000 20,000,000
HGDP 615 MB 39 MB 1,043 154,417
1000 Genomes 8.4 GB 483 MB 2,504 808,704
PRK 2 GB 126 MB 4,706 111,831
T2D 1.8 GB 111 MB 6,370 72,457

I TeraPCA GitHub Repository: h�ps://github.com/aritra90/TeraPCA
I Data Simulator GitHub Repository:

h�ps://github.com/eugeniamaria/DataSimulator

Time comparisons

I Comparison with FlashPCA2 (only 2GB RAM was allowed)
Table: TeraPCA vs FlashPCA2 (∗ indicates no convergence a�er 50 hrs).

Dataset TeraPCA FlashPCA2 Speed-up
S1 26.2 mins 33.3 mins 1.27
S2 39.3 mins 87.5 mins 2.22
S3 7.9 hrs 35.6 hrs 4.50
S4 7.3 hrs n/a∗ ∞
S5 13.2 hrs n/a∗ ∞
S6 39.5 mins 141.1 mins 3.57
S7 37.3 mins 106.5 mins 2.86

HGDP 6.5 secs 7.7 secs 1.22
1000 Genomes 4.3 mins 3.5 mins 0.81

T2D 96 secs 119 secs 1.24
PRK 76 secs 73 secs 0.96

TeraPCA has an advantage over FlashPCA2 (which is based on Implicit
Restarted Arnoldi) due to its block nature which allows to:
• search for multiple PCs simultaneously
• perform more computations per epoch
• take advantage of state-of-the-art dense linear algebra kernels (e.g., BLAS, LAPACK)

I Speedup using Multithreading

Accuracy Results

I Accuracy of leading PCs

200 400 600 800 1000

10
-10

10
-5

10
0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

PC9

PC10

Figure: Element-wise relative error of the 10 leading PCs computed by TeraPCA versus those
computed by LAPACK for the HGDP dataset.

I Accuracy of leading eigenvalues
Table: Accuracy of the 10 leading eigenvalues computed for TeraPCA and FlashPCA2.

eigenvalue relative error eigenvalue relative error
index TeraPCA FlashPCA2 index TeraPCA FlashPCA2

1 9.91E-15 1.74E-03 6 3.01E-06 7.63E-04
2 1.02E-13 1.30E-03 7 3.36E-06 1.47E-03
3 5.65E-11 1.49E-03 8 1.04E-05 6.81E-04
4 2.18E-08 1.31E-03 9 7.11E-05 1.28E-03
5 2.65E-06 1.10E-03 10 1.74E-04 7.44E-04

Acknowledgements

This work was supported by NSF BigData 1661760, NSF IIS1319280 and NSF IIS
1302231.

https://github.com/aritra90/TeraPCA
https://github.com/eugeniamaria/DataSimulator

