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SETTING

Problem: Prior flow models for discrete data suf-
fer from limitations, which are distinct from those
of continuous flows. These limitations include:

e Straightforward optimization cannot be ap-
plied as gradients of discrete functions are
undefined or zero.

e Previous models can only approximate dis-
crete functions with pseudo gradients.

e Backpropagation is burdensome compared
to alternative discrete algorithms.

Our approach seeks to remove computational

burden and the need for pseudo-gradients by de-
veloping a discrete flow model based on decision
trees.

Approach: We propose a decision tree algorithm
based on our own novel tree structure defined
as Tree-Structured Permutation (TSP). A TSP en-
codes a permutation on discrete data allowing for
computing density value and sampling new data
while also preserving an easy calculable inverse.
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CONSTRAINTS OF TSP

Invertibility: To ensure our TSPs are invert-
ible (and thus applicable to discrete tlows), we
prove that invertiblity is guaranteed if all node
permutations man do not permute configura-
tions that are outside of the node’s domain, i.e.,

v (x) = x,Vo & D(N).

Tractability (Naive TSP):

For the purpose of computational tractability and
generalizability we choose to make some restric-
tions to the classes of permutations that we apply,
as listed below:

e Restrict to independent feature-wise per-
mutation which allows each feature to be
permuted independently of other features.

e Restrict the class of node permutations be
the class of permutations that swaps a sin-
gle pair of possible categories while holding
all other category values constant.
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LEARNING TSPsS

We present a greedy approach for building up a
TSP where the goal is to minimize the negative
log likelihood (NLL) over naive TSP permutations
and independent base distributions (), given our
dataset A’

n
QzEQIIEI,I;éclT(Tg’ Q:) = QzEQIIi}i{I;EHTSP
where L(m,(Q).) denotes the negative log-
likelihood, Qg is the set of independent distri-
butions over categorical data, and IlItgsp is the set
of naive TSP permutations. Our proposed learn-
ing algorithm can be decomposed into node-wise
subproblems where two main steps are required.

1=1

 Permutation criteria: To determine the best
permutation for each node, we select the
best single-feature node permutation 7 that
minimizes the change in the NLL:
min L(7, Q) — L(id, Q)

s, mEItsp(N,s)

TREE-STRUCTURED PERMUTATIONS (TSPS)

Y —log Q(m(x:))

o splitting criteria: To determine the best
node to split among all current leat nodes,
we consider using a splitting criteria that
maximizes the ditference between the fac-
torized distribution on the left and the fac-
torized distribution on the right of the pro-
posed split. We want to maximize the di-
vergence between these two distributions,
and for that we used the generalized Jensen-
Shannon Divergence (JSD).

max JSD(Qlg;”, Quigni w0

= H (Qparent)

max[—le(Ql(jf’tv)) — ?UQH(Q(-S’U))]
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EXPERIMENTAL RESULTS

Sample

Sample Number 20  Z1  Pathtaken by sample
Number
1 0 0 Node 1
1 0 0 2 0 1 Node 1
p) 0 1 3 0 2 Node 1
4 1 1 Node 2, Node 3
3 0 2
4 1 0 5 2 0 Node 2, Node 4, Node 6
> 1 1 6 2 2 Node 2, Node 4, Node 5
° 1 2 7 2 1 Node 2, Node 3
7 2 0
8 1 0 Node 2, Node 4, Node 6
8 2 1
k 9 2 2 / Q 1 2 Node 2, Node 4, Node 5

We describe a TSP as a binary decision tree where
each node contains both a permutation and a split
information. Each TSP node can be defined recur-
sively as follows:

x if N is a leaf node

fletany (mar () if[mar(2)]; = v
frightv) (mar(z))  otherwise

fa(z) =

where fy is the evaluation of a node, fies () de-
notes the evaluation of the left child node (and
similarly for the right node), mxr is the permuta-
tion associated with the node, and |[mar(z)];, = v
denotes the condition that the j-th feature after the
permutation has value v.

An example of a TSP is given on the lett.

We present the negative loglikelihood results av-
eraged across 5 folds for our method (DFT), when
compared to the autoregressive flow model (AF),
and the Bipratite flow model (BF), for ditferent ex-
perimental setups.
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