
DISCRETE TREE FLOWS
VIA TREE-STRUCTURED PERMUTATIONS

MAI ELKADY1, JIM LIM2 & DAVID I.INOUYE2

SETTING
Problem: Prior flow models for discrete data suf-
fer from limitations, which are distinct from those
of continuous flows. These limitations include:

• Straightforward optimization cannot be ap-
plied as gradients of discrete functions are
undefined or zero.

• Previous models can only approximate dis-
crete functions with pseudo gradients.

• Backpropagation is burdensome compared
to alternative discrete algorithms.

Our approach seeks to remove computational
burden and the need for pseudo-gradients by de-
veloping a discrete flow model based on decision
trees.

Approach: We propose a decision tree algorithm
based on our own novel tree structure defined
as Tree-Structured Permutation (TSP). A TSP en-
codes a permutation on discrete data allowing for
computing density value and sampling new data
while also preserving an easy calculable inverse.

TREE-STRUCTURED PERMUTATIONS (TSPS)
We describe a TSP as a binary decision tree where
each node contains both a permutation and a split
information. Each TSP node can be defined recur-
sively as follows:

fN (x) =


x if N is a leaf node
fleft(N )(πN (x)) if[πN (x)]j = v

fright(N )(πN (x)) otherwise

where fN is the evaluation of a node, fleft(N ) de-
notes the evaluation of the left child node (and
similarly for the right node), πN is the permuta-
tion associated with the node, and [πN (x)]j = v
denotes the condition that the j-th feature after the
permutation has value v.
An example of a TSP is given on the left.

CONSTRAINTS OF TSP
Invertibility: To ensure our TSPs are invert-
ible (and thus applicable to discrete flows), we
prove that invertiblity is guaranteed if all node
permutations πN do not permute configura-
tions that are outside of the node’s domain, i.e.,
πN (x) = x, ∀x 6∈ D(N ).

Tractability (Naïve TSP):
For the purpose of computational tractability and
generalizability we choose to make some restric-
tions to the classes of permutations that we apply,
as listed below:

• Restrict to independent feature-wise per-
mutation which allows each feature to be
permuted independently of other features.

• Restrict the class of node permutations be
the class of permutations that swaps a sin-
gle pair of possible categories while holding
all other category values constant.

LEARNING TSPS

We present a greedy approach for building up a
TSP where the goal is to minimize the negative
log likelihood (NLL) over naïve TSP permutations
and independent base distributions Qz given our
dataset X :

min
Qz∈QInd,π∈ΠTSP

L(π,Qz) = min
Qz∈QInd,π∈ΠTSP

n∑
i=1

− logQz(π(xi))

where L(π,Qz) denotes the negative log-
likelihood, QInd is the set of independent distri-
butions over categorical data, and ΠTSP is the set
of naïve TSP permutations. Our proposed learn-
ing algorithm can be decomposed into node-wise
subproblems where two main steps are required.

• Permutation criteria: To determine the best
permutation for each node, we select the
best single-feature node permutation π that
minimizes the change in the NLL:

min
s,π∈ΠTSP(N ,s)

L(π,Q′
z)− L(id, Qz)

• splitting criteria: To determine the best
node to split among all current leaf nodes,
we consider using a splitting criteria that
maximizes the difference between the fac-
torized distribution on the left and the fac-
torized distribution on the right of the pro-
posed split. We want to maximize the di-
vergence between these two distributions,
and for that we used the generalized Jensen-
Shannon Divergence (JSD).

max
s,v

JSD(Q
(s,v)
left , Q

(s,v)
right ;w(s,v))

= H(Qparent)+

max
s,v

[−w1H(Q
(s,v)
left )− w2H(Q

(s,v)
right )]

EXPERIMENTAL RESULTS
We present the negative loglikelihood results av-
eraged across 5 folds for our method (DFT), when
compared to the autoregressive flow model (AF),
and the Bipratite flow model (BF), for different ex-
perimental setups.


