
DISCRETE TREE FLOWS
VIA TREE-STRUCTURED PERMUTATIONS

MAI ELKADY1*, JIM LIM2* & DAVID I.INOUYE2

SETTING

Motivation
Discrete data is abundant in many forms and domains, like DNA
sequences, medical records, molecular structure and text. Thus, an-
alyzing discrete data by modeling and inferring its distribution is
crucial in a multitude of applications.

Background: Discrete Flows
While continuous flow models are based on the continuous change
of variables, i.e., Px(x) = Qz(f(x)) det

∣∣∣df(x)dx

∣∣∣, where f is an invert-
ible model, discrete flows are based on the discrete change of vari-
ables, i.e., Px(x) = Qz(σ(x)), where σ is a permutation (i.e., an
invertible discrete transform) and the Jacobian term is 1 because
permutations cannot change volume.

Gap
Prior discrete flow works focus on discrete approximations via pro-
jecting to continuous space or using a straight-through gradient es-
timator. However, prior models still suffer from the following limi-
tations:

• Gradients of discrete functions are undefined or zero there-
fore conventional optimization cannot be applied.

• Discrete functions can only be approximated with pseudo
gradients and backpropagation is burdensome compared to
alternative discrete algorithms.

Approach
Our proposed approach is based on decision trees. Our Tree-
Structured Permutations (TSP) encode permutations at each node,
and are inevitable if a simple constraint is satisfied.

ALGORITHM ILLUSTRATION

Figure 1: Illustration of our two pass algorithm used to learn the optimal node permutations. The leftmost diagram demonstrates a con-
structed TSP where the bar plots represents counts of the categories (0, 1, 2, 3). We show just x1’s counts for simplicity, but the same idea
applies to other features. In the middle, we demonstrate the operation of pass 1. The dashed lines around borders of the bar plots indicate
that these are intermediate steps. The blue arrows indicate that we are learning and applying the local permutations for x1 at the corre-
sponding node. On the right, we demonstrate the resulting tree after both passes. The orange arrows indicate the new node permutations.

STAGE 2: LEARN NODE PERMUTATIONS
We propose a two pass algorithm for learning node permutations:

• Pass 1: The algorithm starts at the leaf nodes and traverses the
tree in a bottom-up fashion. At each leaf node, the algorithm
sorts the local node category counts of each feature in ascend-
ing order. At internal nodes, the local counts from children
are added and then sorted again if needed.

• Pass 2: Using the permutations associated with the sorting in
the first pass, we traverse back down the tree in a top-down
fashion to construct a new equivalent TSP that is guaranteed
to be optimal (i.e., rank consistent).

Therefore, the two pass algorithm will be create a rank consistent
tree equivalent TSP which is optimal in terms of NLL.

STAGE 1: LEARN TREE STRUCTURE

We use a standard greedy decision tree algorithm for learning the
tree structure and test two different splitting criteria:

• DTFRND (Baseline): based on randomly choosing a split fea-
ture and a split value for each node.

• DTFGLP (Novel): based on the greedy local permutation (GLP)
heuristic that chooses the best split feature and split value for
decreasing the NLL when applying a hypothesized optimal
permutation.

PROPERTIES OF TSPS

Key Definitions

• Tree Equivalence: Two TSP tree structures are considered tree
equivalent if and only if they have the same graph structure
(i.e. same nodes and edges) and the same data path configu-
ration (i.e. nodal path of each individual data input).

• Rank Consistency A TSP tree is rank consistent if and only if
there exists an independent permutation π such that the data
categorical counts of any node (after applying all ancestral
nodal permutations) is sorted in ascending order respective
to its categorical values.

Invertibility
To ensure our TSPs are invertible (and thus applicable to discrete
flows), we prove that invertiblity is guaranteed if all node permu-
tations πN do not permute configurations that are outside of the
node’s domain, i.e., πN (x) = x,∀x ̸∈ D(N ).

Optimality of Rank Consistent TSPs
We prove that a rank consistent TSP produces the optimal NLL
among TSPs that are tree equivalent and, ultimately, the optimal
solution to the objective function.

Universal Model
We demonstrate and prove that a sequential composition of TSPs
can produce a universal permutation.

Tractability
We restrict to independent feature-wise permutation which allows
each feature to be permuted independently of other features. Thus,
we define a computational tractable and generalizable model.

Equivalence Relation of Tree Equivalence
We prove that all tree equivalent TSPs also hold equivalence rela-
tion (i.e. holds reflexive, symmetric, and transitive properties).

TREE STRUCTURED PERMUTATIONS (TSPS)
A Tree-Structured Permutation (TSP) is a binary decision tree where
each node contains both a permutation πN and split information.

Figure 2: This is an example of a forward pass of a TSP where πN ’s
represent independent d × k matrix permutation. On node N0 the
split is on the 0th feature x0 and on the category value of 2. πN0

permutes the input [2, 2] to [1, 2] and since this input’s x0! = 2
after the permutation it goes to the right child where it undergoes
another permutation.

Learning Objective: We seek the TSP σT that minimizes the neg-
ative log-likelihood assuming the prior distribution Qz is indepen-
dent:

argmin
σT

min
Qz∈QInd

− 1

n

n∑
i=1

logQz(σT (xi)) .

EXPERIMENTAL RESULTS

AF BF DDF DTFGLP DTFRND

Mushroom
NLL 24.87 (± 2.28) 23.02 (± 2.3) 19.18 (± 3.48) 14.15 (± 2.44) 16.66 (± 2.98)

TTC 29.3 (± 2.0) 20.9 (± 2.7) 175.8 (± 1.9) 9.9 (± 0.2) 0.5 (± 0.0)

TTG 7.7 (± 1.0) 6.0 (± 1.3) 75.2 (± 1.0) NA NA
MNIST

NLL 206.014 (± 0.32) 205.94 (± 0.26) 144.78 (± 10.52) 177.75 (± 0.56) 187.44 (± 1.17)

TTC 12104.6 (± 359.2) 3290.5 (± 13.3) 2909.3 (± 45.4) 5213.7 (± 204.9) 105.6 (± 0.1)

TTG 305.6 (± 31.4) 308.7 (± 4.1) 334.3 (± 8.7) NA NA
Genetic

NLL 490.55 (± 0.69) 471.54 (± 1.87) 446.86 (± 8.64) 437.19 (± 1.02) 470.9 (± 6.1)

TTC 834.0(± 2.1) 251.6 (± 0.5) 209.4 (± 0.6) 411.5 (± 2.3) 5.9 (± 0.0)

TTG 23.8 (± 0.9) 38.0 (± 5.4) 29.5 (±1.1) NA NA

(a) Real-world dataset results.

AF BF DDF DTFGLP

8Gaussian
NLL 6.92 (± 0.06) 7.21 (± 0.09) 6.42 (± 0.03) 6.5 (± 0.03)

TTC 155.9 (± 2.2) 231.6 (± 5.2) 119.8 (± 0.8) 7.3 (± 0.1)

TTG 42.2 (± 3.5) 135.8 (± 0.2) 79.7 (± 0.8) NA
COP-H

NLL 1.53 (± 0.02) 1.47 (± 0.06) 1.46 (± 0.1) 1.33 (± 0.02)

TTC 10.7 (± 0.2) 13.2 (± 0.2) 58.1 (± 1.0) ≤0.1 (± 0.0)

TTG 14.6 (± 0.4) 20.9 (±0.3) 48.8 (±0.9) NA
COP-M

NLL 1.76 (± 0.1) 1.62 (± 0.05) 1.51 (± 0.16) 1.4 (± 0.02)

TTC 10.6 (± 0.02) 13.3 (± 0.06) 77.9 (± 1.8) ≤0.1(± 0.0)

TTG 14.6 (± 0.43) 20.8 (± 0.8) 66.9 (±0.5) NA
COP-W

NLL 2.42 (± 0.02) 2.35 (± 0.03) 2.29 (± 0.07) 2.22 (± 0.02)

TTC 10.5 (± 0.01) 13.2 (± 0.1) 77.3 (± 1.7) ≤0.1 (± 0.0)

TTG 13.9(± 0.2) 19.2 (± 0.2) 67.5(± 0.1) NA

(b) Synethetic dataset results.

Figure 3: TTC: Training time in secs on CPU, TTG: Training time in secs on GPU, NLL: Negative Loglikelihood, AF: Autoregressive Flows,
BF: Bipartite Flows, DDF: Discrete Denoising Flows. Yellow highlights: best performance, blue highlights: second best.

On synthetic datasets, our model always have a better training time on CPU with comparable or better negative loglikelihoods. On high
dimensional real-world datasets, our model with random splitting is fastest on CPU, while the GLP gives comparable NLLs

CONCLUSION AND DISCUSSION
Conclusions

• Our results demonstrate that DTF outperforms prior ap-
proaches in terms of NLL while being substantially faster for
most experiments

• We lay the groundwork for developing practical and effec-
tive discrete flows using decision tree algorithms sidestepping
problems with back-propagation

Limitations

• While the permutations are guaranteed to be optimal, the tree
structure is not since the tree is grown greedily

• Our splitting is axis aligned, and not complex

• As with previous models, large values of categories are chal-
lenging to handle

• Our approach works best for tabular data and extending to
image or text is non-trivial

Future directions

• Upgrade model to be capable of more complex splits, poten-
tially relying on Neural Networks to power the splitting func-
tion, this would in turn allow us to extend the model beyond
tabular data


